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The problem of inverse Compton scattering (ICS) of photons and electrons in plas-
mas is of importance for high-energy astrophysics. One example is the scattering of
photons in an accretion flow. However, most Monte Carlo codes used in this field
are not capable of investigating scattering in plasmas with smooth temperature and
density gradients, and treating bulk motion is difficult even for simple cases. With
the introduction into the field of algorithms associated with nonlinear Monte Carlo
codes, these problems are now tractable numerically. Nonlinear Monte Carlo codes
can already handle arbitrary velocity structures in a plasma. Here an extension of the
algorithm is proposed that enables the calculation of scattering in plasmas with non-
constant density as well as nonconstant temperature and/or bulk motion. Scattering
at low optical depths also can be studied. A code using this method can study the ICS
problem in a wide variety of accretion flows, and do so exactty2001 Academic Press

1. INTRODUCTION

The inverse Compton scattering (ICS) process is important in high-energy astrophys
Many astrophysical systems such as x-ray binaries and active galactic nuclei produce ph
spectra in the x-ray energy band. These x-ray photons are thought to be produced wt
low-energy photon enters a region of hot plasma and scatters off relativistic electrons.
photon gains some energy from the electrons at each scattering event by ICS, and b
escaping from the plasma the photon has typically been scattered up to x-ray ener
or even gamma-ray energies. Thus we are interested in the transport of photons thr
a plasma as they gain energy at a succession of scattering events. Spectra given b
process are said to be “Comptonized.”

Analytic approaches to the problem generally assume the diffusion approximation
the transport as well as diffusion in energy space. The energy diffusion assumption doe:
hold in most plasmas of astrophysical interest because a photon’s energy changes by a
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amount at a scattering event. In rarefied plasmas, the distance between scattering e
can be large, and so the spatial diffusion approximation also is a poor one. In addition,
mean free path of the photons is a function of the photons’ energy as well as the pla:
density, which complicates the spatial transport. The entire situation is further complica
if the geometry of the plasma is not trivial, if other processes (such as absorption) are te
into account, and if complicated photon source functions are to be investigated. Spectra
are formed by this process are therefore often calculated using Monte Carlo techniques
added advantage of using Monte Carlo simulations is their flexibility: these codes can
modified easily to be applicable to many areas of interest in high-energy astrophysics.

The most common Monte Carlo simulations in this branch of astrophysics are analo
simulations [1]. A photon of some energy is injected into the plasma, an integral is perforn
to determine the mean free path, and the location of the next scattering point is found
this point, the scattering event is modeled by sampling the differential cross section,
the new energy and new direction is assigned to the photon. The photon is followed unt
escapes the plasma. After following many photons, a spectrum is built up. An importat
sampling technique is sometimes used to treat the spatial transport, whereby a weig
fraction of the photon is forced to scatter, while the rest of the photon escapes. The we
function is determined at each scattering point by the probability of escape from the plas
[2]. This is useful when the probability of a given photon undergoing a scattering event
very small.

These codes have been used to treat the Comptonization problem in regions wher
plasma has a well-defined temperature and a homogeneous density. However, astroph
plasmas are unlikely to be homogeneous and isothermal. Additionally, treating builk mot
of the plasma with such a code is difficult even for simple cases.

By dividing the plasma into various zones, with each zone having a different temperat
and density, density and temperature variations can be studied in a crude way, e.g., by he
the density decrease in a series of steps. An improvement on this situation was mad
Hua [3], who developed a code to treat smooth density variations, but the plasma was
required to be isothermal, and no bulk motion was considered.

The current state of the art for the Comptonization problem is the nonlinear Monte Ca
(NLMC) code introduced into the field by Steehal. [4]. This method uses a von Neumann
rejection algorithm for finding the location of the next scattering point. This has numero
advantages, as will be described.

In Section 2 we review for completeness the currently used methods of photon transy
In Section 3 we propose a method of combining the Hua and Stern algorithms that ena
the treatment of smooth density variations in the presence of temperature variations and
motion. In Sections 4 and 5 we discuss implementation and give examples of astrophy
problems that now can be tackled with such a code.

Detailed discussions of how to model the actual scattering events were given by |
[3], Gorecki and Wilczewski [5], and especially Pozdnyaletal. [1], and so will not be
discussed here.

2. PHOTON TRANSPORT

In following a photon through the simulation, one must find where the next scatteri
point will be. Typically in a linear simulation, the distanice the next scattering point is
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determined by inverting the cumulative probability distribution
|
%_ —e T = e—fo n(s)ads’ (1)

wherer is called the optical deptlg, is a uniform random number between zero and one
and the cross sectian has been averaged over the distribution of target electrgekis
the electron density along the photon’s pathor a constant density(s) = n, we therefore
have the expression

1
| = - In(€). (2

2.1. Current NLMC Method

Nonlinear Monte Carlo codes take a somewhat different approach to solving the trans
problem. The rate of scattering events for a beam of photons (where the beam consist:
single photon, say) incident with a beam of electrons at some point is

Nokn Vrel- (3)

This quantity is used to determine if a scattering event takes place. It depends on the pho
energy through the Klein—Nishina cross section for electron—photon scattegipgand
the temperature of the electrons through the relative veldgitybecause the temperature
determines how fast our target electron is moving and hence the relative velocity betw
the photon and the electron).

The interaction rate is used if we are interested in the time between scattering ev
rather than the distance (2). We then have the expression

t=——In@) (@)
NokN Vrel '
whereno Vi is the rate of scattering events and it has been assumed that all the elect
have the sam¥,,.

This is, of course, not a realistic assumption. Each electron has a different valpgity
relative to the photon. The real interaction rate (which for a complicated situation is diffici
to evaluate) is the sum of all the partial interaction rates of all the electrons in the plasit
We do not wish to sum over all the electrons in the simulation, so the algorithm used
nonlinear codes assumes the existence of a virtual process, such that [4]

N(okN =+ ovirt) Vel = Not - 2C, (5)

whereot is the Thompson cross sectiarky is the Klein—Nishina cross section, aads
the speed of light. Because one is often interested in scattering in regions of homogen
density,n is dropped from the above to give

(okN + Ovirt) Viel = o7 - 2C. (6)

It is possible forVie to be greater than for some collisions; e.g., the relative velocity
of the photon with respect to the electron is given in Ref. [6Lasve, Wherec is the
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photon velocity vector and, is electron velocity vector, assuming collinear vectors. This
can approach@and hence explains the factor af id Eq. (5).

The use of a virtual process is known in the nuclear engineering literature as “de
scattering,” “fictitious forward scattering,” or “Woodcock tracking” and was first used il
[7]. The technique also is used for transporting electrons in the electron gamma show ¢
[8]. The purpose of introducing the virtual process is that the right-hand side of Eq. (5)
an upper limit on the real interaction rate and is constant, so it is easy to use this valu
determine the time to the next interaction event. In fact, we have

1

t = prv— In(&). (7)

We then find/choose an electron for the photon to scatter with. But having used the rig
hand side of (5), we have to disregard the virtual (unphysical) process and determine if a
scattering event takes place. To put it another way, the probability of an interaction is

sum of the probability of the virtual process occurring and the probability of the real proce
occurring. Therefore, the real scattering event is accepted/selected with a probability

UKNVreI.
o7 - 2C ’

(8)

otherwise the event is rejected as being due to the virtual process, and the photon conti
without scattering until the next time step.

This rejection algorithm is efficient except if the electron is moving relativistically in the
same direction as the photon, in which c&gbecomes small, and if the photon energy is
very large, in which case the cross sectigR becomes small.

The benefits of such a procedure are:

e it can be extended easily to include other processes;

e nointegrals for determining the mean free path through the electrons are required,;

e finding a tentative scattering point does not require any knowledge of the veloc
structure in the accretion flow, so this algorithm can easily handle problems where ther
bulk motion of the flow, as expected for accretion problems. This was a huge advance
“linear” codes, which are generally used to consider isothermal flows without bulk motic

To use such a method to treat bulk motion of the flow, we simply determine a (potenti
scattering point usingo - 2c as the rate of scattering events (Eq. (7)). We then ask, “Wh:
is the direction and momentum of the accretion flow at this tentative point?” This gives
the relative velocity of the electron that we need for the rejection test. We then calcul
the real cross section and accept or reject the scattering event using Eq. (8). If the eve
rejected, the photon continues on its way until the next time step. Or if we are studying
accretion flow with a temperature gradient, at the tentative scattering point we ask what
temperature is at this point, draw an electron from a distribution with this temperature,
then decide to accept or reject the scattering event.

3. PROPOSED EXTENSION OF THE ALGORITHM

Huaet al. [3] described how a nonconstant density profile can be integrated over to fi
the next scattering point using an expression equivalent to Eq. (1). They have implemer
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this method for an isothermal plasma with iant andr 2 density profile using a linear
code.

Here we include this idea in the NLMC method and propose that instead of finding 1
next scattering point usingoT - 2c, we find the scattering location by integrating over a
nonconstant density profile. The interaction rate is now given by

n(s) - ot - 2¢, 9

wheren(s) is the density along a photon path parameterizes. by
If one is interested in sampling the time between scattering events for the case where
density along the photon trajectory is not constant, instead of Eq. (1) we have the intec

2ct
%_ _ e—_]; n(s)ords (10)

or rearranging,

2ct
/ n(s)ords= —In(§). (12)
JO

If n(s) is constant, then the above reduces to Eq. (7). The factar iof the upper limit of
the integral is required because we are interested in scattering events in which the ra
scattering is given by Eq. (9). The distance to the next scattering point is then just the t
multiplied by the speed of light.

The distance above can be thought of as a lower limit on how far the photon really tra
because it uses an upper limit on the interaction rate. In reality the cross sectiomris no
and the relative velocity is nott2So this scattering point is only “tentative.”

Having found a tentative interaction point, the real interaction rate at the scattering p
plus the virtual interaction rate is taken to be

N(S)(okn + ovirt) Viel = N(S)oT - 2C. (12)

So we accept the tentative scattering event with probability

N(S)okn Vrel _ OkN Vrel (13)
n(s)or-2c o7-2c’

This procedure is completely analogous to the previous section. The only difference
the algorithm is that we are performing the distance integral explicitly rather than using
expression that can be integrated in closed form and inverted. This procedure is relativ
and exact: no approximations have been made.

4. DISCUSSION

The efficiency of accepting a scattering event is independent of the density at that p
becausen(s) has canceled in Eq. (13). The integration over the density profile is now tl
most time-intensive part of the code. This modified algorithm still can be used if photo
are weighted in energy. (In fact this is required for good spectral resolution [4].) Onc
scattering point is accepted we evaluate the velocity profile or temperature profile to ¢
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us the properties required for the electron the photon will scatter with. It is not necessar
search through some array of electrons because electrons are not followed in the simula
The velocity or temperature profiles (specified beforehand) give all the information ab
the electrons at the scattering point. This increases the speed of the code but also meal
code cannot treat processes in which electrons must be followed (i.e., pair annihilatic
The main advantage is that arbitrary density and temperature gradients, with or with
bulk motion, can be considered without recourse to zones. Furthermore, this can be c
while retaining all of the features that have made Monte Carlo codes popular, such as
capacity to treat complex geometries and source functions.

As for how such an algorithm may be used, we can consider bulk motion or a temp
ature gradient as before, but now we also can study density gradients as well. This
numerous applications in high-energy astrophysics, such as accretion columns with
sity, temperature and velocity structure falling onto (weakly magnetized) neutron stars
scattering in accretion flows surrounding black holes. We can of course extend Hua’s mc
to include temperature gradients. A mixture of thermal and bulk motion for the electro
can be studied at the tentative scattering point by first considering a frame instantaneo
co-moving with the flow so that an electron can be drawn from a Maxwellian distributic
and assigned a random direction of motion. Having the electrons’ (thermal) propertie:
Lorentz transform can be performed out of the flow frame and into the “lab” frame to obte
the “resultant” vector. This vector (momentum and direction of the electron) is then sen
the rejection algorithm (13) to determine if the interaction is accepted or not.

5. EXAMPLES

As an example of the technique, photon scattering by cold and freely falling electrc
is considered. The geometry of the electron plasma is considered to be spherical, with
photon source located at the center. Two different photon source functions are conside
in particular a line at 6.4 keV and a power law extending from 2 to 100 keV, both of whic
are common in x-ray astrophysics. Previous treatments of this problem have had to ass
a cross section constant with energy and slowly moving electrons [9].

Figure 1 shows a Comptonized line with injected energy of 6.4 keV. The solid curve
after scattering in a sphere of cold (stationary) electrons of optical deptB8.0, while the
dashed line is for scattering in cold electrons with a radial density profile of the form

n(r) = (no)(r/R+1)~32, (14)

wheren(0) is the density at the origin defined so that a sphere of constant def@jityould
have an optical depth of 3.0. Both lines are injected at the origin (center of the sphere). L
broadening occurs as a result of electron scattering. It can be seen that in the presen
the density gradient the line is less broad because the photons have to travel through
optical depth to escape from the sphere.

Figure 2 shows the same 6.4 keV line scattering through the same density gradient
where a velocity gradient of the form

v(r) = (vo)(r/R+1)~Y2 (15)

has been added. A density profiten—%/2 and a velocity profilex v—/2 are appropriate for
electrons that are falling freely under gravity onto some accreting object. The solid cu
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Intensity vs Photon Energy

o LI L B I B B 3

2k

TENE R

log Intensity

._5:_

VR FETEN U AT PR T TR UR L I

B | NI S S S ST B PRI AT AT AT A AT AT A ETER SR SR
3 4 5 6
Energy (keV)

i

FIG. 1. Scattering of a 6.4 keV line by cold electrons.

is for vp/c = 0.03, the dashed curve is fop/c = 0.05, and the dot-dashed curve is for
vo/C = 0.07. The slope of the high-energy wing of the line dependsgon

Figure 3 shows the distortion of a power law of energy index 1.0 due to scattering
by cold electrons in a spherical geometry. The solid curve is the injected power law, wh
extends from 2 to 100 keV. The power-law photons are injected at the origin of the sph
The dashed curve is the resulting Compton scattered spectrum for a sphere of con
density and optical depth = 3.0. The dot-dashed curve is the result of scattering by col
electrons with a density profile given by Eq. (14). The presence of the density gradi
pushes up the energy at which the break in the power law occurs because there is
total optical depth from the center to the edge of the sphere so fewer scattering events
place.

Figure 4 shows the distortion of a power law of energy index 1.0 due to scat-
tering by electrons with a density profile given by Eq. (13) and a velocity profile give
by Eq. (14). The dot-dot-dot-dashed, dot-dashed, short-dashed, and long-dashed ci
correspond to ag/c of 0.1, 0.3, 0.6, and 0.8, respectively. (The long-dashed curve h
been shifted downward compared with the other curves because extra energy bins
used for this case.) For low velocities the spectrum has almost the same form as for
cold-electron case. As the velocity increases, curvature is introduced into the power |
then the power law becomes flat {1.0). At large velocities a peak is formed above
100 keV.
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FIG. 2. Scattering of a 6.4 keV line by freely falling electrons.

5.1. Low Optical Depth

Low optical depths present a problem as many photons can be injected and then es
without scattering at all. The problem of scattering at low optical depths has therefore b
treated with linear codes using a technique of forced scattering. Each simulation phc
carries a number or “weight,” which describes the number of “real” photons to which
corresponds. Instead of the usual method of finding the scattering point, the normalizatio
the cumulative distribution function is changed to force the photon to scatter in the plast

E=1—-e"h/1—em, (16)

whered is the distance to the edge of the cloud along the photon’s pathishe distance the
photon travels (constant density has been assumed for this section). Invertinglthisdsr
1 —nod
|=——In1-&1—e ). a7
no
To make this procedure physical, the photon’s weight is then changed so that part of
the weight associated with the photon escapes from the plasma and is binned. The pt
(with a suitably reduced weight) continues scattering inside the cloud. The escaping we
has the value

Wesc = wolde_nad, (18)
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intensity vs Photon Energy
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FIG.3. Scattering of powerlaw photons by cold electrons with constant density and by electrons with a den
gradient.

while the photon weight is given the new value
Wnew = Wold — Wesc (19)

After following many photon trajectories, the escaping weighis: build up the resulting
spectrum. For an example of this procedure in investigating the Sunyaev—Zeldovich eff
see Molnar and Birkinshaw [2].

This procedure can also be made to work for NLMC transport. This enables investigat
of bulk-motion scattering and scattering through temperature gradients in low optical de
plasmas without making approximations.

Consider a simulation photon at some point in the plasma, andteke T in the above
expressions. A fraction of the weight given by Eg. (16) escapes and is binned. Equa
(15) then is used to find a tentative scattering point. Note that the escaping fraction of
weight is binned whether or not the tentative scattering event is accepted. The photon
has its weight adjusted. If the scattering event is accepted, the photon changes energ;
direction and the simulation proceeds. If the scattering event is rejected, the photon loce
is updated to the location of the tentative scattering point and another tentative scatte
point is drawn without changing the photon’s direction. The photon can “step” its w:
through the plasma with part of its weight escaping at each “step” even if it is not scatteri

This procedure has been used to produce the curves in Fig. 5. The solid curve
blackbody spectrum injected at the origin of a sphere of constant density. The optical de
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FIG. 5. Bulk-motion scattering forr =0.001 and thermal scattering far=0.001, for blackbody source

photons.

log Intensity

log Intensity

-0.5

L
b

o
=

JASON CULLEN

Intensity vs Photon Energy

1 2
log Energy (keV)

3

FIG. 4. Scattering of powerlaw photons by freely falling electrons.
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of the sphere ig = 0.001 The dashed line is the resulting Comptonized spectrum fc
an isothermal plasma of temperature 250 keV, while the dot-dashed line is producec
bulk-motion Comptonization in a converging spherical flow of constant density. The flow
directed toward the origin at the center of the sphere, and the flow velocity is constant
set equal taw/c = 0.67. The optical depth is again= 0.001. Different velocity profiles
and/or temperature profiles can be included as described in Section 4. This is a flexible
of treating velocity and temperature gradients in low optical depth plasmas.

6. CONCLUSION

The NLMC transport method has been extended to include density gradients. This cc
have various applications in astrophysics, where plasmas may not be homogeneous
isothermal. The density can be smoothly varying, and density zones are not required.
method of forced scattering has also been demonstrated to work within the framewor|
the NLMC method, meaning that plasmas containing temperature and velocity struct
now can be considered even if the scattering plasma is of small optical depth.

One of the original reasons the NLMC codes were developed was to study the coo
of a plasma by inverse Compton scattering in a self-consistent manner. An exampls
such a calculation was given by Malzac and Jourdain [10], where the optical depth
homogeneous plasma is allowed to vary until the rate of energy loss through scatte
events equals the rate of energy injection in the form of new particles. In principle this
still possible for the modified algorithm considered here, if we imagine fixing the shape
the density and temperature distributions, while allowing the normalization of the dens
profile to move up and down. This corresponds to injecting more electrons or remov
electrons until the rate energy is removed equals the rate energy is being injected (w
would be calculated by integrating over the density and temperature distributions). Th
sorts of calculations are more demanding than pure Comptonization problems and so
not been considered here.

One restriction on the method is that it cannot study electron—positron pair casca
because only photons are followed in the code. Other than this, it is a flexible way
treating the Comptonization problem.

APPENDIX
In the case of a photon interacting with electrons, the relativistic expression for f
reaction rate is [11]

Py, P .
E.E,

OKN (Al)
wherePy,, is the momentum four-vector of particle 1 (the photon, sB¥)is the momentum
four-vector of particle 2 (target particlefr; and E; are the energies of particles 1 and 2,
okn is the cross section, amdis the density of target electrons.

The four-vector contraction iBy, P;' = E1E, — p1p2, wherep; andp, are the momen-
tum vectors of the particles, and so

PPy  EiEx;—pip2 1 P P2
E.E, E.E, Ei1 E»

):(1—Q-v), (A2)
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whereQ? is the unit vector in the photon propagation direction angithe electron velocity
vector, and with units where= 1 being assumed. On comparison of Eq. (A1) with Eq. (3]
one sees that correct reaction rates are obtained if the quantit§X1v) is identified with
Vel @s used in this paper.

10.

11.
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